(H.5.39) Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là 40 cm, 44 cm, 48 cm.
a) Khoảng cách từ điểm D đến đáy bể bằng bao nhiêu centimét? (Tính gần đúng, lấy giá trị nguyên).
b) Đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Chọn hệ trục tọa độ như hình vẽ.
40 cm = 0,4 m, 44 cm = 0,44 m, 48 cm = 0,48 m.
Khi đó ta có A(0; 1; 0,4), B(1; 1; 0,44), C(1; 0; 0,48).
Có \(\overrightarrow {AB} = \left( {1;0;0,04} \right)\).
Vì ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \)\( \Leftrightarrow \left\{ \begin{array}{l}1 - {x_D} = 1\\ - {y_D} = 0\\0,48 - {z_D} = 0,04\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = 0\\{z_D} = 0,44\end{array} \right.\).
Suy ra D(0; 0; 0,44).
Vậy khoảng cách từ điểm D đến đáy bể là 44 cm.
b) Ta có đáy bể nằm trong mặt phẳng Oxy: z = 0 có vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
Ta có\(\overrightarrow {AB} = \left( {1;0;0,04} \right)\), \(\overrightarrow {AC} = \left( {1; - 1;0,08} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0,04; - 0,04; - 1} \right)\).
Mặt phẳng (ABCD) đi qua A(0; 1; 0,4) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0,04; - 0,04; - 1} \right)\) có phương trình là:
0,04x – 0,04(y – 1) – (z – 0,4) = 0 Û 0,04x – 0,04y – z + 0,44 = 0.
Do đó góc giữa đáy bể và mặt phẳng nằm ngang chính là góc giữa mặt phẳng (ABCD) và mặt đáy.
Có \(\cos \left( {\left( {ABCD} \right),\left( {Oxy} \right)} \right) = \frac{{\left| { - 1} \right|}}{{\sqrt 1 .\sqrt {{{0,04}^2} + {{\left( { - 0,04} \right)}^2} + {{\left( { - 1} \right)}^2}} }}\) \( = \frac{{\sqrt {627} }}\).
Suy ra ((ABCD), (Oxy)) ≈ 3,2°.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |