Bài tập  /  Bài đang cần trả lời

(H.5.39) Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là 40 cm, 44 cm, 48 cm. a) Khoảng cách từ điểm D đến đáy bể bằng bao nhiêu centimét? (Tính gần đúng, lấy giá trị nguyên). b) Đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

(H.5.39) Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là 40 cm, 44 cm, 48 cm.

a) Khoảng cách từ điểm D đến đáy bể bằng bao nhiêu centimét? (Tính gần đúng, lấy giá trị nguyên).

b) Đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

1 Xem trả lời
Hỏi chi tiết
72
0
0
Phạm Văn Bắc
11/09 11:10:07

a) Chọn hệ trục tọa độ như hình vẽ.

40 cm = 0,4 m, 44 cm = 0,44 m, 48 cm = 0,48 m.

Khi đó ta có A(0; 1; 0,4), B(1; 1; 0,44), C(1; 0; 0,48).

Có \(\overrightarrow {AB} = \left( {1;0;0,04} \right)\).

Vì ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \)\( \Leftrightarrow \left\{ \begin{array}{l}1 - {x_D} = 1\\ - {y_D} = 0\\0,48 - {z_D} = 0,04\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = 0\\{z_D} = 0,44\end{array} \right.\).

Suy ra D(0; 0; 0,44).

Vậy khoảng cách từ điểm D đến đáy bể là 44 cm.

b) Ta có đáy bể nằm trong mặt phẳng Oxy: z = 0 có vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).

Ta có\(\overrightarrow {AB} = \left( {1;0;0,04} \right)\), \(\overrightarrow {AC} = \left( {1; - 1;0,08} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0,04; - 0,04; - 1} \right)\).

Mặt phẳng (ABCD) đi qua A(0; 1; 0,4) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0,04; - 0,04; - 1} \right)\) có phương trình là:

0,04x – 0,04(y – 1) – (z – 0,4) = 0 Û 0,04x – 0,04y – z + 0,44 = 0.

Do đó góc giữa đáy bể và mặt phẳng nằm ngang chính là góc giữa mặt phẳng (ABCD) và mặt đáy.

Có \(\cos \left( {\left( {ABCD} \right),\left( {Oxy} \right)} \right) = \frac{{\left| { - 1} \right|}}{{\sqrt 1 .\sqrt {{{0,04}^2} + {{\left( { - 0,04} \right)}^2} + {{\left( { - 1} \right)}^2}} }}\) \( = \frac{{\sqrt {627} }}\).

Suy ra ((ABCD), (Oxy)) ≈ 3,2°.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×