Bài tập  /  Bài đang cần trả lời

Cho \((H)\) là đa giác đều \[2n\] đỉnh nội tiếp đường tròn tâm \(O\,\,(n \in \mathbb{N},\,\,n > 2).\) Gọi \(S\) là tập hợp các tam giác có 3 đỉnh là các đỉnh của đa giác \((H).\) Chọn ngẫu nhiên một tam giác thuộc tập \(S,\) biết rằng xác suất chọn một tam giác vuông trong tập \(S\) là \(\frac{3}\). Tìm \(n\).

Cho \((H)\) là đa giác đều \[2n\] đỉnh nội tiếp đường tròn tâm \(O\,\,(n \in \mathbb{N},\,\,n > 2).\) Gọi \(S\) là tập hợp các tam giác có 3 đỉnh là các đỉnh của đa giác \((H).\) Chọn ngẫu nhiên một tam giác thuộc tập \(S,\) biết rằng xác suất chọn một tam giác vuông trong tập \(S\) là \(\frac{3}\). Tìm \(n\).

1 Xem trả lời
Hỏi chi tiết
10
0
0
Phạm Văn Bắc
11/09/2024 11:16:51

Số phần tử của không gian mẫu \(n\left( \Omega  \right) = C_{2n}^3.\)

Tam giác vuông được chọn là tam giác chứa cạnh là đường kính của đường tròn tâm \[O.\]

Đa giác đều 2n đỉnh chứa 2n đường chéo là đường kính của đường tròn tâm \[O,\] mỗi đường kính tạo nên \(2n - 2\) tam giác vuông.

Do đó số tam giác vuông trong tập \[S\] là: \(\frac{2} \cdot \left( {2n - 2} \right) = 2n\left( {n - 1} \right).\)

Xác suất chọn một tam giác vuông trong tập \[S\] là:

\(\frac{{2n\left( {n - 1} \right)}}{{C_{2n}^3}} = \frac{{2n\left( {n - 1} \right)}}{{\frac{{\left( {2n} \right)!}}{{\left( {2n - 3} \right)!.3!}}}} = \frac{{2n\left( {n - 1} \right)}}{{\frac{{2n\left( {2n - 1} \right)\left( {2n - 2} \right)}}{6}}}\)\( = \frac{3} = \frac{3} \Rightarrow n = 15\).

Đáp án: 15.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×