Cho hình bình hành ABCD, qua C kẻ đường thẳng song song BD cắt AB ở E, cắt AD ở F.
a) Tứ giác BECD là hình gì? Vì sao?
b) Chứng minh 3 đường thẳng AC, BF, DE đồng quy (cùng đi qua 1 điểm).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Tứ giác BECD là hình bình hành vì BE // CD (giả thiết) và CE // BD (giả thiết).
b) Ta có DF // BC (giả thiết) và BD // CF (giả thiết).
Suy ra BCFD là hình bình hành.
Do đó CF = BD (1)
Lại có BECD là hình bình hành (chứng minh trên).
Suy ra CE = BD (2)
Từ (1), (2), suy ra CF = CE.
Do đó CA là đường trung tuyến của tam giác AEF (*)
Ta có FD = BC (do BCFD là hình bình hành) và AD = BC (do ABCD là hình bình hành).
Suy ra DF = AD.
Do đó DE là đường trung tuyến của tam giác AEF (**)
Chứng minh tương tự, ta được BF là đường trung tuyến của tam giác AEF (***)
Từ (*), (**), (***), suy ra ba đường thẳng AC, BF, DE đồng quy tại trọng tâm của tam giác AEF.
Vậy ta có điều phải chứng minh.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |