Cho đường tròn tâm O, bán kính R = 8 cm và một điểm A có khoảng cách OA = 16 cm. Một đường kính BC quay xung quanh tâm O (đường thẳng BC không đi qua A). Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là D.
a) Chứng minh ∆OAB và ∆OCD đồng dạng.
b) Tính OD, suy ra D là điểm cố định khi đường kính BC quay xung quanh điểm O.
c) Giả sử AB cắt đường tròn (O) tại điểm thứ hai E và AC cắt đường tròn (O) tại điểm thứ hai F và gọi P là giao điểm của EF với OA. Chứng minh bốn điểm C, F, D, P cùng nằm trên một đường tròn. Có nhận xét gì về bốn điểm B, E, D, P?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Xét ∆OAB và ∆OCD, có:
\(\widehat {CBA} = \widehat {CDA}\) (2 góc nội tiếp cùng chắn của đường tròn ngoại tiếp tam giác ABC);
\(\widehat {AOB} = \widehat {COD}\) (đối đỉnh).
Do đó (g.g).
b) Ta có (chứng minh câu a).
Suy ra \(\frac = \frac\).
\( \Leftrightarrow \frac{8} = \frac{8}\).
\( \Leftrightarrow OD = \frac = 4\) (cm).
Ta có \(OD = \frac = \frac{{{R^2}}}\).
Mà R cố định và OA cố định.
Nên D là điểm cố định khi đường kính BC quay xung quanh điểm O.
c) Ta có tứ giác BEFC nội tiếp đường tròn (O).
Suy ra \(\widehat {EBC} = \widehat {EFA}\).
Mà \(\widehat {EBC} = \widehat {ADC}\) (chứng minh trên).
Do đó \(\widehat {ADC} = \widehat {EFA}\).
Vì vậy bốn điểm C, F, D, P cùng nằm trên một đường tròn.
Chứng minh tương tự, ta được bốn điểm B, E, D, P cùng nằm trên một đường tròn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |