Bài tập  /  Bài đang cần trả lời

Cho đường tròn tâm O, bán kính R = 8 cm và một điểm A có khoảng cách OA = 16 cm. Một đường kính BC quay xung quanh tâm O (đường thẳng BC không đi qua A). Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là D. a) Chứng minh ∆OAB và ∆OCD đồng dạng. b) Tính OD, suy ra D là điểm cố định khi đường kính BC quay xung quanh điểm O. c) Giả sử AB cắt đường tròn (O) tại điểm thứ hai E và AC cắt đường tròn (O) tại điểm thứ hai F và gọi P là giao điểm của EF với OA. Chứng minh bốn điểm ...

Cho đường tròn tâm O, bán kính R = 8 cm và một điểm A có khoảng cách OA = 16 cm. Một đường kính BC quay xung quanh tâm O (đường thẳng BC không đi qua A). Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là D.

a) Chứng minh ∆OAB và ∆OCD đồng dạng.

b) Tính OD, suy ra D là điểm cố định khi đường kính BC quay xung quanh điểm O.

c) Giả sử AB cắt đường tròn (O) tại điểm thứ hai E và AC cắt đường tròn (O) tại điểm thứ hai F và gọi P là giao điểm của EF với OA. Chứng minh bốn điểm C, F, D, P cùng nằm trên một đường tròn. Có nhận xét gì về bốn điểm B, E, D, P?

1 Xem trả lời
Hỏi chi tiết
18
0
0
Nguyễn Thị Nhài
11/09/2024 11:20:01

Lời giải

a) Xét ∆OAB và ∆OCD, có:

\(\widehat {CBA} = \widehat {CDA}\) (2 góc nội tiếp cùng chắn  của đường tròn ngoại tiếp tam giác ABC);

\(\widehat {AOB} = \widehat {COD}\) (đối đỉnh).

Do đó  (g.g).

b) Ta có  (chứng minh câu a).

Suy ra \(\frac = \frac\).

\( \Leftrightarrow \frac{8} = \frac{8}\).

\( \Leftrightarrow OD = \frac = 4\) (cm).

Ta có \(OD = \frac = \frac{{{R^2}}}\).

Mà R cố định và OA cố định.

Nên D là điểm cố định khi đường kính BC quay xung quanh điểm O.

c) Ta có tứ giác BEFC nội tiếp đường tròn (O).

Suy ra \(\widehat {EBC} = \widehat {EFA}\).

Mà \(\widehat {EBC} = \widehat {ADC}\) (chứng minh trên).

Do đó \(\widehat {ADC} = \widehat {EFA}\).

Vì vậy bốn điểm C, F, D, P cùng nằm trên một đường tròn.

Chứng minh tương tự, ta được bốn điểm B, E, D, P cùng nằm trên một đường tròn.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×