Cho hàm số bậc nhất: y = (2m + 1)x – 2 có đồ thị là đường thẳng (d).
a) Vẽ đồ thị hàm số với m = 1.
b) Tìm m để (d) song song với đồ thị hàm số: y = –4x + 1.
c) Tìm m để khoảng cách từ gốc tọa độ đến (d) bằng \(\sqrt 2 \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) (d): y = (2m + 1)x – 2 \(\left( {m \ne - \frac{1}{2}} \right)\).
Với m = 1, ta có: y = 3x – 2.
Bảng giá trị của (d) khi m = 1:
x | 1 | 2 |
y | 1 | 4 |
Do đó đồ thị hàm số y = 3x – 2 là đường thẳng đi qua hai điểm (1; 1) và (2; 4).
b) Ta có (d) song song với đồ thị hàm số y = –4x + 1.
Suy ra
Do đó \(m = - \frac{5}{2}\).
Vậy \(m = - \frac{5}{2}\) thỏa mãn yêu cầu bài toán.
c) Gọi A, B lần lượt là giao điểm của đường thẳng (d) với hai trục Ox, Oy.
Suy ra B(0; –2). Do đó OB = 2.
Để (d) cắt Ox (y = 0) thì 2m + 1 ≠ 0 \( \Leftrightarrow m \ne - \frac{1}{2}\).
Phương trình hoành độ giao điểm của (d) và Ox: (2m + 1)x – 2 = 0
\( \Leftrightarrow x = \frac{2}\).
Suy ra tọa độ \(A\left( {\frac{2};0} \right)\).
Do đó \(OA = \frac{2}{{\left| {2m + 1} \right|}}\).
Gọi H là hình chiếu của O lên AB.
Tam giác OAB vuông tại O có OH là đường cao:
\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\) (Hệ thức lượng trong tam giác vuông).
\( \Leftrightarrow \frac{1}{{O{H^2}}} = \frac{{{{\left( {2m + 1} \right)}^2}}}{4} + \frac{1}{4} = \frac{{4{m^2} + 4m + 2}}{4}\).
Suy ra \(O{H^2} = \frac{4}{{4{m^2} + 4m + 2}}\).
Do đó \(OH = \frac{2}{{\sqrt {4{m^2} + 4m + 2} }}\).
Theo đề, ta có khoảng cách từ gốc tọa độ đến (d) bằng \(\sqrt 2 \).
Suy ra \(OH = \sqrt 2 \).
\( \Leftrightarrow \frac{2}{{\sqrt {4{m^2} + 4m + 2} }} = \sqrt 2 \)
\( \Leftrightarrow \sqrt {4{m^2} + 4m + 2} = \sqrt 2 \)
⇔ 4m2 + 4m = 0
⇔ m = 0 hoặc m = –1.
So với điều kiện \(m \ne - \frac{1}{2}\), ta nhận m = 0 hoặc m = –1.
Vậy m ∈ {0; –1} thỏa mãn yêu cầu bài toán.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |