Diện tích hình phẳng thuộc góc phần tư thứ hai, giới hạn bởi parabol \(y = 2 - {x^2}\), đường thẳng \(y = - x\) và trục \(Oy\) bằng:
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án: \(\frac{7}{6}\)
Phương pháp giải:
- Xác định các đường giới hạn hình phẳng.
- Hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),{\mkern 1mu} {\mkern 1mu} y = g\left( x \right)\), \(x = a,{\mkern 1mu} {\mkern 1mu} x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Giải chi tiết:
Xét phương trình hoành độ giao điểm: \(2 - {x^2} = - x \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 2}\end{array}} \right.\)
Vì hình phẳng thuộc góc phần tư thứ hai nên \(x < 0 \Rightarrow x = - 1\).
Khi đó diện tích hình phẳng thuộc góc phần tư thứ hai, giới hạn bởi parabol \(y = 2 - {x^2}\), đường thẳng \(y = - x\) và trục \(Oy\) giới hạn bởi các đường \(y = 2 - {x^2}\), \(y = - x\), \(x = - 1\), \(x = 0\) nên :
\(S = \int\limits_{ - 1}^0 {\left| {2 - {x^2} + x} \right|dx} = \frac{7}{6}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |