Tìm ước chung lớn nhất
Viết chương trình nhập vào hai số tự nhiên a, b không đồng thời bằng 0 và in ra ước số chung lớn nhất của a, b.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ước chung lớn nhất (GCD — Greatest Common Divisor) là một khái niệm quan trọng trong số học và nhiều lĩnh vực khác. Mục đích của bài toán là tìm số nguyên Z lớn nhất đồng thời là ước số của cả a và b.
Một cách tiếp cận đơn giản là khi b > 0 ta có thể thử tất cả các giá trị số nguyên d = b, b - 1, b - 2, ..., 1 và dừng lại ngay khi gặp số nguyên d là ước số của cả a và b. Còn tất nhiên khi b == 0, ước số chung lớn nhất của a và b chính là a
Phương pháp này tuy đúng nhưng có hiệu suất rất kém. Một phương pháp khác hiệu quả hơn là thuật toán Euclid (được nhà toán học người Hy Lạp đưa ra vào khoảng thế kỉ III trước công nguyên). Thuật toán Euclid như sau:
Lặp cho đến khi b ≠ 0
+ Tính r là số dư của phép chia a cho b.
+ Thay cặp số (a, b) bởi cặp số (b, r).
- Kết thúc: Giá trị a sau vòng lặp là ước chung lớn nhất của hai số ban đầu. Tham khảo chương trình sau:
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |