Cho phương trình x2 – 2x – 2m2 = 0 (m là tham số).
a) Giải phương trình khi m = 0.
b) Tìm m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa mãn điều kiện \(x_1^2 = 4x_2^2\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Khi m = 0 ta có phương trình x2 – 2x = 0
Û x(x – 2) = 0
Û \(\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Vậy khi m = 0, phương trình có tập nghiệm S = {0; 2}.
b) Phương trình x2 – 2x – 2m2 = 0 (1)
Phương trình (1) có hai nghiệm phân biệt x1, x2 khác 0 Û \(\left\{ \begin{array}{l}\Delta ' > 0\\{x_1}.{x_2} \ne 0\end{array} \right.\)
Theo hệ thức Viet ta có:
\[\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = - 2{m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 2 - {x_1}\,\,\,\,\,\\{x_1}.{x_2} = - 2{m^2}\,\,\left( * \right)\end{array} \right.\]
Do x1, x2 là hai nghiệm của phương trình (1) nên ta có:
\[\left\{ \begin{array}{l}{\rm{x}}_1^2--2{x_1}--2{m^2} = 0\\{\rm{x}}_2^2--2{x_2}--2{m^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 2{x_2} + 2{m^2}\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 2\left( {2 - {x_1}} \right) + 2{m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{x}}_1^2 = 2{x_1} + 2{m^2}\\{\rm{x}}_2^2 = 4 - 2{x_1} + 2{m^2}\end{array} \right.\)
Theo bài, \(x_1^2 = 4x_2^2\)
Û 2x1 + 2m2 = 4.(4 – 2x1 + 2m2)
Û 2x1 + 2m2 = 16 – 8x1 + 8m2
Û 10x1 = 6m2 + 16
Û \({x_1} = \frac{{3{m^2} + 8}}{5}\)
Khi đó \[{x_2} = 2 - \frac{{3{m^2} + 8}}{5} = \frac}{5}\]
Thay \({x_1} = \frac{{3{m^2} + 8}}{5}\) và \[{x_2} = \frac}{5}\]vào (*) ta được:
\[\frac{{3{m^2} + 8}}{5}.\frac}{5} = - 2{m^2}\]
Û 6m2 – 9m4 + 16 – 24m2 = ‒50m2
Û 32m2 – 9m4 + 16 = 0
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\\{m^2} = - \frac{4}{9}\,\,\,\left( {loai} \right)\end{array} \right. \Leftrightarrow m = \pm 2\left( {tm\,\,m \ne 0} \right)\).
Vậy m = ± 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |