Bài tập  /  Bài đang cần trả lời

Cho hình thoi ABCD có Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.

Cho hình thoi ABCD có Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.

1 Xem trả lời
Hỏi chi tiết
12
0
0
Tôi yêu Việt Nam
11/09/2024 12:17:49

⦁ Vì ABCD là hình thoi nên AB = BC = CD = DA.

Vì M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên    

Do đó

Xét ∆ABD có AB = AD nên ∆ABD cân tại A, lại có nên ∆ABD là tam giác đều. Do đó AB = BD (2) và

Lại có M, Q là lần lượt là trung điểm của AB, AD nên MQ là đường trung bình của tam giác. Do đó MQ // BD và

Chứng minh tương tự, ta cũng có

Từ (1), (2), (3) và (4) suy ra MB = BN = NP = PD = DQ = QM.

⦁ Vì MQ // BD nên (so le trong).

Mà (hai góc kề bù)

Suy ra

Tương tự, ta có

Tam giác BCD có BC = CD và (tính chất hình thoi) nên ∆BCD là tam giác đều. Do đó

Ta có

         

Khi đó,

Như vậy MBNPDQ có các cạnh bằng nhau và các góc bằng nhau.

Vậy MBNPDQ là lục giác đều.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×