Bài tập  /  Bài đang cần trả lời

Cho (O; R) có AB là đường kính. Lấy điểm C thuộc tiếp tuyến Ax, BC cắt đường tròn (O) tại H. a) Chứng minh BH . BC = 4R2. b) Phân giác của góc ABC cắt (O) ở M và cắt AC ở D. Chứng minh BM . BD = BH . BC. c) Gọi K là trung điểm của AC. Chứng minh KH là tiếp tuyến của đường tròn (O).

Cho (O; R) có AB là đường kính. Lấy điểm C thuộc tiếp tuyến Ax, BC cắt đường tròn (O) tại H.

a) Chứng minh BH . BC = 4R2.

b) Phân giác của góc ABC cắt (O) ở M và cắt AC ở D. Chứng minh BM . BD = BH . BC.

c) Gọi K là trung điểm của AC. Chứng minh KH là tiếp tuyến của đường tròn (O).

1 Xem trả lời
Hỏi chi tiết
36
0
0
Tô Hương Liên
11/09/2024 12:16:13

Lời giải

a) Vì AB là đường kính (O; R) nên AB = 2R

Vì C thuộc tiếp tuyến Ax của (O)

Nên CA ⊥ AB

Suy ra tam giác ABC vuông tại A

Vì H thuộc (O) đường kính AB

Nên tam giác ABH vuông tại H

Suy ta HA ⊥ HB

Xét tam giác ABC vuông tại A có HA ⊥ HB (chứng minh trên)

Suy ra BH . BC = AB2 = (2R)2 = 4 R2

b) Vì M thuộc (O) đường kính AB

Nên tam giác ABM vuông tại M

Suy ta MA ⊥ MB

Xét tam giác ABC vuông tại A có MA ⊥ MB (chứng minh trên)

Suy ra BM . BD = AB2

Mà BH . BC = AB2 (chứng minh câu a)

Do đó BM . BD = BH . BC

c) Vì H, A cùng thuộc (O)

Nên OA = OH

Do đó tam giác AOH cân tại O

Suy ra \(\widehat {OAH} = \widehat {OHA}\)

Vì AH ⊥ BC nên tam giác AHC vuông tại H

Suy ra \(\widehat {CAH} + \widehat {HCA} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Mà \(\widehat {CAH} + \widehat {HAO} = \widehat {CAO} = 90^\circ \)

Suy ra \(\widehat {OAH} = \widehat {HCA}\)

Lại có \(\widehat {OAH} = \widehat {OHA}\) (chứng minh trên)

Do đó \(\widehat {OHA} = \widehat {HCA}\)                  (1)

Xét tam giác AHC vuông tại H có HK là đường trung tuyến

Suy ra \(HK = KC = \frac{1}{2}AC\)

Do đó tam giác HCK cân tại K

Suy ra \(\widehat {KHC} = \widehat {KCH}\)                            (2)

Từ (1) và (2) suy ra \(\widehat {KHC} = \widehat {OHA}\)

Mặt khác \(\widehat {KHC} + \widehat {KHA} = \widehat {CHA} = 90^\circ \)

Suy ra \(\widehat {OHA} + \widehat {KHA} = 90^\circ \)

Hay \(\widehat {OHK} = 90^\circ \)

Nên OH ⊥ HK

Xét (O) có H thuộc (O), OH ⊥ HK

Suy ra KH là tiếp tuyến của (O)

Vậy KH là tiếp tuyến của (O).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×