Cho tam giác ABC vuông tại A. Điểm M thuộc cạnh BC. Từ M vẽ các đường thẳng vuông góc với cạnh AB ở D và với cạnh AC ở E.
a) Chứng minh AM = DE
b) Gọi I là điểm đối xứng của D qua A và K là điểm đối xứng của E qua M. Chứng minh rằng các đoạn thẳng IK, DE, AM đồng quy tại trung điểm O của mỗi đoạnc) Gọi AH là đường cao của tam giác ABC (H thuộc BC). Tính số đo góc DHEd) Tìm vị trí của điểm M trên cạnh BC để tứ giác DIEK là hình thoi
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì MD ⊥ AB nên \(\widehat {M{\rm{D}}A} = 90^\circ \)
ME ⊥ AC nên \(\widehat {MEA} = 90^\circ \)
Vì tam giác ABC vuông tại A nên \(\widehat {BAC} = 90^\circ \)
Xét tứ giác ADME có \(\widehat {M{\rm{D}}A} = 90^\circ \), \(\widehat {MEA} = 90^\circ \), \(\widehat {DAE} = 90^\circ \)
Suy ra ADME là hình chữ nhật
Mà AM, DE là 2 đường chéo
Suy ra AD = ME, AM = DE, AM cắt DE tại trung điểm của mỗi đoạn
Vậy AM = DE.
b) Gọi O là giao điểm của AM và DE
Nên ta có O là trung điểm của AM, DE (chứng minh câu a) (1)
Vì I là điểm đối xứng của D qua A và K là điểm đối xứng của E qua M
Nên \[IA = AD = \frac{1}{2}DI,\,\,\,KM = EM = \frac{1}{2}KE\]
Mà AD = ME (chứng minh câu a)
Suy ra DI = KE
Ta có DI ⊥ AC, KE ⊥ AC
Suy ra DI // KE (quan hệ từ vuông góc đến song song)
Xét tứ giác DKEI có DI // KE và DI = KE (chứng minh trên)
Suy ra DKEI là hình bình hành
Suy ra DE cắt KI tại trung điểm của mỗi đường
Mà O là trung điểm của DE
Do đó O là trung điểm của KI (2)
Từ (1) và (2) suy ra các đoạn thẳng IK, DE, AM đồng quy tại trung điểm O của mỗi đoạn
c) Vì tam giác AHM vuông tại H, HO là đường trung tuyến
nên \[HO = \frac{1}{2}AM\]
Mà AM = DE
Suy ra HO = \(\frac{1}{2}\)DE
Xét tam giác DHE có \[HO = \frac{1}{2}DE\], HO là trung tuyến
Suy ra tam giác DHE vuông tại H
Do đó \(\widehat {DHE} = 90^\circ \)
d) Để hình bình hành DIKE là hình thoi
Thì EK = EI
Mà EK = 2EM, EI = AM
Suy ra AM = 2EM
Xét tam giác AEM vuông tại E có AM = 2EM
Suy ra \(\widehat {MAE} = 30^\circ \)
Vậy lấy M thuộc BC sao cho \(\widehat {MAC} = 30^\circ \) thì tứ giác DIEK là hình thoi.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |