Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A đường cao AH, I là trung điểm của AB. Lấy K đối xứng với B qua H. Qua A dựng đường thẳng song song với BC cắt HI tại D a) AKHD là hình gì? b) Chứng minh tứ giác AHBD là hình chữ nhật c) Tam giác ABC phải có thêm điều kiện gì để AHBD là hình vuông d) M là điểm đối xứng với A qua H. Chứng minh AK vuông góc với CM.

Cho tam giác ABC vuông tại A đường cao AH, I là trung điểm của AB. Lấy K đối xứng với B qua H. Qua A dựng đường thẳng song song với BC cắt HI tại D a) AKHD là hình gì? b) Chứng minh tứ giác AHBD là hình chữ nhật c) Tam giác ABC phải có thêm điều kiện gì để AHBD là hình vuông d) M là điểm đối xứng với A qua H. Chứng minh AK vuông góc với CM.
1 Xem trả lời
Hỏi chi tiết
16
0
0
Tô Hương Liên
11/09/2024 12:15:29

Lời giải

a) Xét tam giác ABK có I là trung điểm của AB, H là trung điểm của BK

Do đó HI là đường trung bình

Suy ra HI // AK

Xét tứ giác AKHD có HI // AK, AD // HK

Suy ra AKHD là hình bình hành

Vậy AKHD là hình bình hành

b) Vì AKHD là hình bình hành (chứng minh câu a)

Nên AD = HK

Mà BH = HK (giả thiết)

Suy ra AD = BH

Vì AH ⊥ BC nên \(\widehat {AHB} = 90^\circ \)

Xét tứ giác AHBD có AD = BH, AD // BH (chứng minh trên)

Suy ra AHBD là hình bình hành

Mà \(\widehat {AHB} = 90^\circ \)

Suy ra AHBD là hình chữ nhật

Vậy AHBD là hình chữ nhật

c) Để hình chữ nhật AHBD là hình vuông thì AH = BH

⟺ Tam giác ABK vuông tại A (vì AH = BH = HK)

⟺ K ≡ C (vì tam giác ABC vuông tại A)

⟺ H là trung điểm của BC

⟺ tam giác ABC cân tại A

Vậy tam giác ABC vuông cân thì AHBD là hình vuông

d) Xét tứ giác ABMK có hai đường chéo AM và BK cắt nhau tại trung điểm H của mỗi đường

Suy ra ABMK là hình bình hành

Suy ra AB // MK

Mà AB ⊥ AC

Do đó MK ⊥ AC

Xét tam giác AMC có MK, CH là hai đường cao

MK cắt CH tại K

Suy ra K là trực tâm tam giác AMC

Do đó AK ⊥ MC

Vậy AK ⊥ MC.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×