Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh và SAEF = cos2A.SABC.
b) Gọi M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC lần lượt tại P và Q. Chứng minh PH = QH.
c) Chứng minh \(\cot A + \cot B + \cot C \ge \sqrt 3 \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Xét ∆BAE và ∆CAF, có:
\(\widehat A\) chung;
\(\widehat {BEA} = \widehat {CFA} = 90^\circ \).
Do đó (g.g).
Suy ra \(\frac = \frac\).
Xét ∆AEF và ∆ABC, có:
\(\widehat A\) chung;
\(\frac = \frac\,\,\,\left( {do\,\,\frac = \frac} \right)\).
Do đó (c.g.c).
Ta có \(\frac{{{S_{AEB}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}AE.BE}}{{\frac{1}{2}AC.BE}} = \frac\).
Tương tự, ta có \(\frac{{{S_{AEF}}}}{{{S_{ABE}}}} = \frac\).
Suy ra \(\frac{{{S_{AEF}}}}{{{S_{ABE}}}}.\frac{{{S_{AEB}}}}{{{S_{ABC}}}} = \frac.\frac \Leftrightarrow \frac{{{S_{AEF}}}}{{{S_{ABC}}}} = \frac.\frac = \cos A.\cos A = {\cos ^2}A\).
Vậy SAEF = cos2A.SABC.
b) Gọi I là điểm đối xứng của C qua H. Suy ra HC = HI.
Ta có M là trung điểm BC và H và trung điểm CI.
Suy ra HM là đường trung bình của tam giác BCI.
Do đó HM // BI.
Mà HM ⊥ PH (giả thiết).
Suy ra BI ⊥ PH.
Tam giác BHI có hai đường cao HP, BF cắt nhau tại P.
Suy ra P là trực tâm của tam giác BHI.
Do đó PI ⊥ BH.
Mà BH ⊥ AC (giả thiết).
Vì vậy PI // AC.
Xét ∆HPI và ∆HQC, có:
\(\widehat {PHI} = \widehat {QHC}\) (cặp góc đối đỉnh);
HI = HC (giả thiết);
\(\widehat {HIP} = \widehat {HCQ}\) (do PI // AC, cặp góc so le trong).
Do đó ∆HPI = ∆HQC (g.c.g).
Suy ra HP = HQ.
c) Ta cần chứng minh: cotA.cotB + cotB.cotC + cotC.cotA = 1.
Thật vậy: cotA.cotB + cotB.cotC + cotC.cotA = 1.
\( \Leftrightarrow \frac{1}{{\tan A.\tan B}} + \frac{1}{{\tan B.\tan C}} + \frac{1}{{\tan A.\tan C}} = 1\)
⇔ tanC + tanA + tanB = tanA.tanB.tanC.
Ta có \[\tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}\].
⇒ tanA + tanB = (1 – tanA.tanB).tan(A + B)
⇒ tanA + tanB + tanC = (1 – tanA.tanB).tan(π – C) + tanC
⇒ tanA.tanB.tanC = –tanC.(1 – tanA.tanB) + tanC
⇒ tanA.tanB.tanC = –tanC + tanA.tanB.tanC + tanC
⇒ tanA.tanB.tanC = tanA.tanB.tanC (luôn đúng).
Vì vậy ta có cotA.cotB + cotB.cotC + cotC.cotA = 1.
Ta có (cotA + cotB + cotC)2
= cot2A + cot2B + cot2C + 2cotA.cotB + 2cotB.cotC + 2cotC.cotA
\( = \frac{1}{2}\left[ {{{\left( {\cot A - \cot B} \right)}^2} + {{\left( {\cot B - \cot C} \right)}^2} + {{\left( {\cot C - \cot A} \right)}^2}} \right]\)
\( + 3\left( {\cot A.\cot B + \cot B.\cot C + \cot C.\cot A} \right) \ge 3\left( {\cot A.\cot B + \cot B.\cot C + \cot C.\cot A} \right)\)
= 3.1 = 3.
Vậy \(\cot A + \cot B + \cot C \ge \sqrt 3 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |