Từ một điểm A nằm bên ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Đường thẳng vuông góc với OB tại O cắt tia AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
1) Xác định hình tính của tứ giác AMON.
2) Điểm A phải cách O một khoảng là bao nhiêu để MN là tiếp tuyến của (O)?
3) Tính diện tích tứ giác AMON.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
1) Tứ giác AMON có: AM // ON (cùng vuông góc với OB) và AC // OM (cùng vuông góc với OC).
Suy ra tứ giác AMON là hình bình hành (1)
Xét ∆OBM và ∆OCN, có:
\[\widehat {MBO} = \widehat {NCO} = 90^\circ \];
OB = OC (= R);
\(\widehat {MOB} = \widehat {NOC}\) (cùng phụ với \(\widehat {MON}\)).
Do đó ∆OBM = ∆OCN (g.c.g).
Suy ra OM = ON (cặp cạnh tương ứng) (2)
Từ (1), (2), suy ra tứ giác AMON là hình thoi.
2) Gọi I là giao điểm của AO và MN.
Suy ra AO ⊥ MN tại I và I là trung điểm AO và MN (do tứ giác AMON là hình thoi).
MN tiếp xúc với (O; R) khi và chỉ khi d(O, MN) = R.
⇔ OI = R.
⇔ OA = 2R (do I là trung điểm AO).
Vậy OA = 2R thỏa mãn yêu cầu bài toán.
3) Tam giác ABO vuông tại B: \(\sin \widehat {OAB} = \frac = \frac{R} = \frac{1}{2}\).
\( \Rightarrow \widehat {OAB} = 30^\circ \).
Ta có \(\widehat {AON} = \widehat {OAB} = 30^\circ \) (AM // ON và cặp góc này là cặp góc so le trong).
Tam giác OIN vuông tại I: \(\tan \widehat {AON} = \frac\).
Suy ra \(IN = R.\tan 30^\circ = \frac{{R\sqrt 3 }}{3}\).
Do đó \(MN = \frac{{2R\sqrt 3 }}{3}\).
Vậy diện tích hình thoi AMON là: \({S_{AMON}} = \frac{1}{2}OA.MN = \frac{1}{2}.2R.\frac{{2R\sqrt 3 }}{3} = \frac{{2{R^2}\sqrt 3 }}{3}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |