Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm. a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn. b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB. c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB. d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là các tiếp điểm.

a) Chứng minh bốn điểm A, B, M, O cùng thuộc một đường tròn.

b) Kẻ đường kính AC của đường tròn (O). Chứng minh OM // CB.

c) Vẽ BK vuông góc với AC tại K. Chứng minh: CK.OM = OB.CB.

d) Tiếp tuyến tại C của đường tròn (O) cắt AB tại D. Chứng minh OD ^ CM.

1 Xem trả lời
Hỏi chi tiết
26
0
0
Nguyễn Thanh Thảo
11/09/2024 12:28:57

Lời giải

a) Xét tứ giác AOBM có: \(\widehat {MAO} + \widehat {MBO} = 90^\circ + 90^\circ = 180^\circ \)

Þ AOBM là tứ giác nội tiếp đường tròn.

Vậy bốn điểm A, B, M, O cùng thuộc một đường tròn.

b) Theo tính chất 2 tiếp tuyến cắt nhau, ta có:

MA và MB là 2 tiếp tuyến cắt nhau tại M Þ MA = MB.

Lại có OA = OB = R

Þ OM là đường trung trực của đoạn thẳng AB

Þ OM ^ AB (1)

Mà \[\widehat {ABC} = 90^\circ \] (Do góc nội tiếp chắn nửa đường tròn)

Þ AB ^ BC (2)

Từ (1) và (2) Þ OM // BC

c) Do OM // BC \( \Rightarrow \widehat {AOM} = \widehat {ACB}\) (Hai góc ở vị trí đồng vị)

Þ \(\widehat {AOM} = \widehat {KCB}\)

Lại có OM là đường trung trực trong tam giác cân OAB nên nó cũng là đường phân giác của tam giác OAB

\( \Rightarrow \widehat {AOM} = \widehat {BOM}\)

Nên suy ra \(\widehat {KCB} = \widehat {BOM}\)

Xét ∆BCK và ∆MOB có:

\(\widehat {KCB} = \widehat {BOM}\) (cmt)

\(\widehat {BKC} = \widehat {MBO}\;\left( { = 90^\circ } \right)\)

Þ ∆BCK ᔕ ∆MOB (g.g)

\( \Rightarrow \frac = \frac \Rightarrow CK.OM = OB.CB\) (đpcm)

d) Lấy E là giao điểm của CM và OD.

Ta có: \(\widehat {BCD} = \widehat {BAC}\) (Hai góc cùng phụ với \(\widehat {BCA}\))

Mà \(\widehat {BMO} = \widehat {BAO}\) (Hai góc nội tiếp cùng chắn cung BO)

\( \Rightarrow \widehat {BMO} = \widehat {BCD}\)

Xét ∆BMO và ∆BCD có:

\(\widehat {BMO} = \widehat {BCD}\) (cmt)

\(\widehat {MBO} = \widehat {CBD}\;\left( { = 90^\circ } \right)\)

Þ ∆BMO ᔕ ∆BCD (g.g)

\( \Rightarrow \frac = \frac\)

Mà \(\widehat {MBC} = \widehat {OBD}\)

Þ ∆MBC ᔕ ∆OBD (c.g.c)

\( \Rightarrow \widehat {BMC} = \widehat {BOD}\)

Þ Tứ giác BMOE nội tiếp đường tròn

\( \Rightarrow \widehat {MEO} = \widehat {MBO} = 90^\circ \) (Hai góc nôij tiếp cùng chắn cung MO)

Þ OD ^ CM (đpcm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×