Cho hình thang cân ABCD có AB // CD, AB < CD. Gọi M, N lần lượt là trung điểm của AB, CD và T là giao điểm của AC và BD (Hình 30).
Chứng minh:
a) TAD^=TBC^,TDA^=TCB^;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do ABCD là hình thang cân nên AC = BD và AD = BC (tính chất hình thang cân).
Xét ΔADC và ΔBCD có:
AD = BC; AC = BD; DC là cạnh chung
Do đó ΔADC = ΔBCD (c.c.c)
Suy ra CAD^=DBC^ (hai góc tương ứng)
Hay TAD^=TBC^.
Chứng minh tương tự ta cũng có: ΔABD = ΔBAC (c.c.c)
Suy ra BDA^=ACB^ (hai góc tương ứng)
Hay TDA^=TCB^.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |