Xét các số thực dương a và b thỏa mãn \[{\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\]. Giá trị nhỏ nhất của biểu thức \(P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}}\)bằng:
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án: 4
Giải chi tiết:
ĐKXĐ: \(\left\{ {\begin{array}{*{20}{l}}{b - a > 0}\\{a,{\mkern 1mu} {\mkern 1mu} b > 0}\end{array}} \right.\).
Ta có: \({\log _3}\left( {1 + ab} \right) = \frac{1}{2} + {\log _3}\left( {b - a} \right)\)
\( \Leftrightarrow {\log _3}\left( {1 + ab} \right) - {\log _3}\left( {b - a} \right) = \frac{1}{2}\)
\( \Leftrightarrow {\log _3}\frac = \frac{1}{2}\)
\( \Leftrightarrow \frac = \sqrt 3 \)
\( \Leftrightarrow 1 + ab = \sqrt 3 \left( {b - a} \right)\)
\( \Leftrightarrow \frac{1}{a} + b = \sqrt 3 \left( {\frac{b}{a} - 1} \right)\).
Áp dụng BĐT Cô-si ta có \(\frac{1}{a} + b \ge 2\sqrt {\frac{b}{a}} \) nên
\(\sqrt 3 \left( {\frac{b}{a} - 1} \right) \ge 2\sqrt {\frac{b}{a}} \Leftrightarrow \sqrt 3 \frac{b}{a} - 2\sqrt {\frac{b}{a}} - \sqrt 3 \ge 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sqrt {\frac{b}{a}} \ge \sqrt 3 }\\{\sqrt {\frac{b}{a}} \le - \frac{1}{{\sqrt 3 }}{\mkern 1mu} {\mkern 1mu} \left( {Loai} \right)}\end{array}} \right. \Leftrightarrow \sqrt {\frac{b}{a}} \ge \sqrt 3 \Leftrightarrow \frac{b}{a} \ge 3\)
Ta có: \(P = \frac{{\left( {1 + {a^2}} \right)\left( {1 + {b^2}} \right)}}{{a\left( {a + b} \right)}} = \frac}{{a\left( {a + b} \right)}}\)
Áp dụng BĐT Cô-si ta có \(1 + {a^2}{b^2} \ge 2\sqrt {{a^2}{b^2}} = 2ab\) nên
\(1 + {a^2} + {b^2} + {a^2}{b^2} \ge {a^2} + {b^2} + 2ab = {\left( {a + b} \right)^2}\)
\( \Rightarrow P = \frac}{{a\left( {a + b} \right)}} \ge \frac{{{{\left( {a + b} \right)}^2}}}{{a\left( {a + b} \right)}} = \frac{a} = 1 + \frac{b}{a} \ge 4\)
Vậy \({P_{\min }} = 4 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{a} = b}\\{\frac{b}{a} = 3}\\{a,{\mkern 1mu} {\mkern 1mu} b > 0,{\mkern 1mu} {\mkern 1mu} b - a > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{a} = 3a}\\{b = 3a}\\{a,{\mkern 1mu} {\mkern 1mu} b > 0,{\mkern 1mu} {\mkern 1mu} b - a > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{1}{{\sqrt 3 }}}\\{b = \sqrt 3 }\end{array}} \right.\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |