LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140 kg chất X và 9 kg chất Y. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng có thể chiết xuất được 20 kg chất X và 0,6 kg chất Y. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10 kg chất X và 1,5 kg chất Y. Cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II. Phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít ...

Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140 kg chất X và 9 kg chất Y. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng có thể chiết xuất được 20 kg chất X và 0,6 kg chất Y. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10 kg chất X và 1,5 kg chất Y. Cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II.

Phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất mà vẫn đáp ứng được các yêu cầu đặt ra ở trên?

Đặt ẩn và viết bài toán quy hoạch tuyến tính diễn tả yêu cầu của bài toán trên.
1 trả lời
Hỏi chi tiết
56
0
0
CenaZero♡
11/09 13:18:53

Gọi x, y lần lượt là số tấn nguyên liệu loại I và loại II cần dùng (x ≥ 0, y ≥ 0).

Do cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II nên x ≤ 10, y ≤ 9.

Số kg chất X chiết xuất được từ x tấn nguyên liệu loại I và y tấn nguyên liệu loại II là: 20x + 10y (kg).

Số kg chất Y chiết xuất được từ x tấn nguyên liệu loại I và y tấn nguyên liệu loại II là: 0,6x + 1,5y (kg).

Theo bài, cần chiết xuất ít nhất 140 kg chất X và 9 kg chất Y nên ta có hệ phương trình:

Gọi F(x; y) là chi phí mua nguyen liệu, khi đó F(x; y) = 4x + 3y (triệu đồng).

Vậy ta có bài toán quy hoạch tuyến tính như sau:

F(x; y) = 4x + 3y → min

với các ràng buộc

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư