Ta giải bài toán Tình huống mở đầu.
Từ HĐ1 ta có bài toán quy hoạch tuyến tính sau:
F(x; y) = 40x + 30y → max
Với các ràng buộc
Miền chấp nhận được S của bài toán là miền tứ giác tô màu trong Hình 2.3.
Từ câu b suy ra giá trị lớn nhất của F(x; y) trên miền S, từ đó suy ra lời giải của bài toán.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: F(x; y) = 40x + 30y = m, mà theo kết quả của câu b, ta có 0 ≤ m ≤ 2 000 nên 0 ≤ F(x; y) ≤ 2 000.
Vậy giá trị lớn nhất của F(x; y) trên miền S là 2 000.
Ta có lời giải của bài toán như sau:
Gọi x và y lần lượt là số kilôgam sản phẩm loại I và loại II cần sản xuất.
Lợi nhuận của xí nghiệp khi sản xuất x kg sản phẩm loại I và y kg sản phẩm loại II là: F(x; y) = 40x + 30y (nghìn đồng).
Số kg nguyên liệu để sản xuất x kg sản phẩm loại I và y kg loại II là: 2x + 4y (kg).
Số giờ làm để sản xuất x kg sản phẩm loại I và y kg loại II là: 30x + 15y (giờ).
Vì xí nghiệp có 200 kg nguyên liệu (lượng nguyên liệu sử dụng không vượt quá lượng có sẵn) và tối đa 1 200 giờ làm việc nên ta có hệ:
Miền nghiệm của hệ bất phương trình trên là miền tứ giác OABC được tô màu trong hình vẽ dưới đây, trong đó đường thẳng d1: x + 2y = 100 và đường thẳng d2: 2x + y = 80.
Xét đường thẳng dm: 40x + 30y = m luôn cắt trục tung tại điểm có tung độ
Từ hình vẽ, ta thấy rằng để dm ∩ S ≠ ∅ thì tức là 0 ≤ m ≤ 2 000.
Ta có: F(x; y) = 40x + 30y = m, nên 0 ≤ F(x; y) ≤ 2 000.
Giá trị lớn nhất của F(x; y) trên miền S là 2 000.
Vậy lợi nhuận cao nhất mà xí nghiệp đạt được là 2 000 nghìn đồng, tức 2 triệu đồng khi sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |