Biết rằng C(x) = 16 000 + 500x – 1,64x2 + 0,004x3 là hàm chi phí và p(x) = 1 700 – 7x là hàm cầu của x đơn vị hàng hóa. Hãy tìm mức sản xuất để lợi nhuận là lớn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hàm lợi nhuận là:
P(x) = xp(x) – C(x)
= x.(1 700 – 7x) – (16 000 + 500x – 1,64x2 + 0,004x3)
= 1 700x – 7x2 – 16 000 – 500x + 1,64x2 – 0,004x3
= – 0,004x3 – 5,36x2 + 1 200x – 16 000.
Ta cần tìm x để P(x) là lớn nhất.
Ta có P’(x) = – 0,012x2 – 10,72x + 1 200.
P’(x) = 0 ⇔ – 0,012x2 – 10,72x + 1 200 = 0
⇔ x ≈ 100,6.
Ta có P(100) = 46 400 và P(101) = 46 401,436 nên P(100) < P(101).
Do số đơn vị hàng hóa phải là số nguyên dương nên để lợi nhuận lớn nhất thì mức sản xuất là x = 100 đơn vị hàng hóa.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |