Giả sử C(x) = 18 000 + 500x – 1,6x2 + 0,004x3 (nghìn đồng) là hàm chi phí và p(x) = 1 500 – 3x (nghìn đồng) là hàm cầu của x đơn vị một loại hàng hoá nào đó.
Tìm mức sản xuất x để lợi nhuận thu được là lớn nhất.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét hàm lợi nhuận P(x) = – 0,004x3 – 1,4x2 + 1 000x – 18 000 (nghìn đồng) với x ≥ 0.
Ta có P’(x) = –0,012x2 – 2,8x + 1 000.
P’(x) = 0 ⟺ –0,012x2 – 2,8x + 1 000 = 0 ⇔ x ≈ 194,7.
Ta có P(194) = 94 104,064 và P(195) = 94 105,5 nên P(194) < P(105).
Do số đơn vị hàng hóa phải là số nguyên dương nên để lợi nhuận lớn nhất thì mức sản xuất là x = 195 đơn vị hàng hóa.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |