Cho ba đường thẳng
d:x=1+ty=2+3tz=3−t; d'':x=2−2t'y=−2+t'z=1+3t' và d'':x=2−2t''y=−2+t''z=3+3t''.
a) Đường thẳng d' và đường thẳng d" có song song hay trùng với đường thẳng d không?
b) Giải hệ phương trình \(\left\{ \begin{array}{l}1 + t = 2 - 2t'\\2 + 3t = - 2 + t'\\3 - t = 1 + 3t'\end{array} \right.\) (ẩn t và t'). Từ đó nhận xét vị trí tương đối giữa d và d'.
c) Giải hệ phương trình \(\left\{ \begin{array}{l}1 + t = 2 - 2t''\\2 + 3t = - 2 + t''\\3 - t = 3 + 3t''\end{array} \right.\) (ẩn t và t"). Từ đó nhận xét vị trí tương đối giữa d và d".
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có đường thẳng d đi qua M(1; 2; 3) và có vectơ chỉ phương \(\overrightarrow = \left( {1;3; - 1} \right)\).
Đường thẳng d' đi qua N(2; −2; 1) và có vectơ chỉ phương \(\overrightarrow = \left( { - 2;1;3} \right)\).
Vì \(\overrightarrow ;\overrightarrow \) không cùng phương nên d và d' không song song với nhau.
Đường thẳng d" đi qua P(2; −2; 3) và có vectơ chỉ phương \(\overrightarrow = \left( { - 2;1;3} \right)\).
Vì \(\overrightarrow ;\overrightarrow \) không cùng phương nên d và d" không song song với nhau.
b) \(\left\{ \begin{array}{l}1 + t = 2 - 2t'\\2 + 3t = - 2 + t'\\3 - t = 1 + 3t'\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t + 2t' = 1\\3t - t' = - 4\\t + 3t' = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t' = 1\end{array} \right.\). Suy ra hệ có nghiệm duy nhất.
Vậy d và d' cắt nhau.
c) \(\left\{ \begin{array}{l}1 + t = 2 - 2t''\\2 + 3t = - 2 + t''\\3 - t = 3 + 3t''\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t + 2t'' = 1\\3t - t'' = - 4\\t + 3t'' = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t' = 1\\ - 1 + 3 = 0\end{array} \right.\) (vô nghiệm).
Suy ra hệ vô nghiệm. Do đó d và d' chéo nhau.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |