Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ đi qua điểm M0(x0; y0) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;\,\,b} \right)\). Xét điểm M(x; y) nằm trên ∆ (Hình 26).
Nhận xét về phương của hai vectơ \(\overrightarrow u \) và \(\overrightarrow {{M_0}M} \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Đường thẳng ∆ đi qua điểm M0 và M, nên đường thẳng ∆ chính là đường thẳng MM0. Khi đó vectơ \(\overrightarrow {{M_0}M} \) có giá chính là đường thẳng ∆.
Vectơ \(\overrightarrow u \) là vectơ chỉ phương của đường thẳng ∆ nên giá của vectơ \(\overrightarrow u \) phải song song hoặc trùng với đường thẳng ∆.
Do đó, hai vectơ \(\overrightarrow u \) và \(\overrightarrow {{M_0}M} \) có giá song song hoặc trùng nhau.
Vậy hai vectơ \(\overrightarrow u \) và \(\overrightarrow {{M_0}M} \) cùng phương.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |