Cho hình lăng trụ đều ABC.A'B'C' , biết góc giữa hai mặt phẳng (A'BC) và (A'B'C') bằng 45°, diện tích tam giác A'BC bằng \({a^2}\sqrt 6 \). Tính diện tích xung quanh của hình trụ ngoại tiếp hình lăng trụ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi M là trung điểm BC.
Khi đó ta có: BC ⊥ AM, BC ⊥ A’M.
Suy rs: ((A’BC), (ABC)) = \(\widehat {A'MA} = 45^\circ \) ⇒ A’A = AM.
Gọi O là trọng tâm tam giác ABC.
Đặt BC = x, x > 0.
Ta có \(AM = A'A = \frac{{x\sqrt 3 }}{2}\) \( \Rightarrow A'M = \frac{{x\sqrt 6 }}{2}\).
Nên \({S_{\Delta A'BC}} = \frac{1}{2}.A'M.BC = \frac{{{x^2}\sqrt 6 }}{4} = {a^2}\sqrt 6 \)
⇒ x = 2a.
Khi đó: \(AO = \frac{2}{3}AM = \frac{2}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{2a\sqrt 3 }}{3}\) và \(A'A = a\sqrt 3 \)
Suy ra diện tích xung quanh khối trụ là:
\({S_{xq}} = 2\pi \,.\,OA\,.\,A'A = 2\pi \frac{{2a\sqrt 3 }}{3}\,.\,a\sqrt 3 = 4\pi {a^2}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |