Cho hình chóp S.ABC có đáy là tam giác đều cạnh 1, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích của khối cầu ngoại tiếp hình chóp đã cho.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi H là trung điểm của AB. Khi đó SH ⊥ (SAB).
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, dựng đường thẳng d đi qua O và vuông góc với (ABC).
Khi đó d // SH
Dựng đường trung trực của (SAB), cắt d tại I.
Khi đó I là tâm mặt cầu ngoại tiếp hình chóp SABC.
Gọi K là giao điểm của SH và mặt phẳng trung trực của (SAB).
Do đó tứ giác IKHO là hình chữ nhật, K là trọng tâm tam giác SAB.
Khi đó: R = SI = IA = IB = IC là bán kính mặt cầu ngoại tiếp hình chóp SABC.
• Tam giác ABC đều có cạnh là 1 nên \(CH = \frac{{\sqrt 3 }}{2} \Rightarrow OC = \frac{2}{3}CH = \frac{{\sqrt 3 }}{3}\).
• Tam giác SAB đều có cạnh là 1 nên \(SH = \frac{{\sqrt 3 }}{2} \Rightarrow HK = \frac{1}{3}SH = \frac{{\sqrt 3 }}{6} = IO\)
Xét tam giác IOC vuông tại O ta có:
\(IC = \sqrt {O{I^2} + O{C^2}} = \sqrt {\frac{3} + \frac{1}{3}} = \sqrt {\frac{5}} = \frac{{\sqrt {15} }}{6}\).
Vậy \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {\frac{{\sqrt {15} }}{3}} \right)^3} = \frac{{5\pi \sqrt {15} }}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |