Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).
a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO ⊥ BC tại H.
b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì AB, AC là tiếp tuyến của (O) nên \(\widehat {ABO} = \widehat {ACO} = 90^\circ \)
Xét tứ giác ABOC có: \(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \)
⇒ Tứ giác ABOC nội tiếp ⇒ A, B, O, C cùng thuộc đường tròn đường kính OA.
Vì AB, AC là tiếp tuyến của (O) nênAO là đường trung trực của BC.
Do đó AO ⊥ BC tại H.
b) Xét ∆BCD có: H là trung điểm của BC, O là trung điểm của BD
Suy ra OH là đường trung bình của ∆BCD.
Do đó OH // CD hay OA // CD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |