Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Phương trình chính tắc của parabol có dạng y2 = 2px (với p > 0).
Vì AB = 40 và Ox là đường trung trực của đoạn AB nên khoảng cách từ điểm A đến trục Ox là \(\frac{2} = 20\).
Chiều sâu h bằng khoảng cách từ O đến AB và cũng chính bằng khoảng cách từ điểm A đến trục Oy và bằng 30.
Do đó, parabol đi qua điểm A có hoành độ là 30 (khoảng cách từ A đến trục Oy) và tung độ là 20 (khoảng cách từ A đến trục Ox) hay A(30; 20).
Thay tọa độ điểm A vào phương trình chính tắc của parabol, ta được:
202 = 2p . 30 ⇔ 60p = 400 ⇔ p = \(\frac{3}\) (thỏa mãn p > 0).
Vậy phương trình chính tắc của parabol cần lập là \({y^2} = 2.\frac{3}.x\,\,hay\,\,{y^2} = \frac{3}x\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |