Chứng minh rằng không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \sin x\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét hai dãy số (an) với an = 2nπ và (bn) = \(\frac{\pi }{2} + 2\pi n\left( {n \in {\mathbb{N}^*}} \right)\)
Ta có: lim an = lim 2nπ = +∞
lim bn = \(\lim \left( {\frac{\pi }{2} + 2\pi n} \right) = \lim n\left( {\frac{\pi } + 2\pi } \right) = + \infty \)
lim sinan = lim sin2nπ = lim 0 = 0
lim sinbn = \(\lim \sin \left( {\frac{\pi }{2} + 2\pi n} \right) = \lim 1 = 1\)
Như vậy an ⇒ +∞, bn ⇒ +∞ nhưng lim sinan ≠ lim sinbn
Do đó theo định nghĩa, hàm số y = sin x không có giới hạn khi x ⇒ +∞
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |