Cho (O) và điểm A nằm ngoài đường tròn. Vẽ cách tiếp tuyến AB, AC và cát tuyến ADE. Gọi H là trung điểm DE.
a) Chứng minh: A, B, H, O, C cùng nằm trên một đường tròn.
b) Chứng minh: HA là phân giác của BHC.
c) Gọi I là giao điểm của BC và DE. Chứng minh: AB2 = AI . AH.
d) BH cắt (O) ở K. Chứng minh: AE // CK.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì AB,AC là tiếp tuyến của (O), H là trung điểm DE
⇒ AB ⊥ OB, AC ⊥ OC, OH ⊥ DE ⇒ OH ⊥ AH
⇒ A, B, H, O, C thuộc đường tròn đường kính AO.
b) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC
Mà A, B, H, O, C thuộc đường tròn đường kính AO
⇒ A nằm chính giữa cung BC
⇒ HA là phân giác \(\widehat {BHC}\)
c) Vì AB là tiếp tuyến của (O)
⇒ \(\widehat {ABI} = \widehat {ABC} = \frac{1}{2}\widehat {BOC} = \widehat {BOA} = \widehat {BHA}\)
Xét ΔABI và ΔAHB có:
Chung \(\widehat A\)
\(\widehat {ABI} = \widehat {BHA}\)⇒ ΔABI ∽ ΔAHB (g.g)
⇒ AB2 = AI.AH
d) Vì AB là tiếp tuyến của (O)
⇒ \(\widehat {IHB} = \widehat {AHB} = \widehat {ABC}\) (câu c)
⇒ HI // CK
⇒ AE // CK.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |