d) 1x2−x+1≤12x2+x+2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
d)
Xét phương trình bậc hai x2 – x + 1 = 0 có a = 1 > 0 và ∆1 = (–1)2 – 4.1.1 = –3 < 0 do đó, x2 – x + 1 > 0 với mọi số thực x.
Xét phương trình bậc hai 2x2 + x + 2 = 0 có a = 2 > 0 và ∆2 = 12 – 4.2.2 = –15 < 0 do đó, 2x2 + x + 2 > 0 với mọi số thực x
Do đó, tập xác định của bất phương trình 1x2−x+1≤12x2+x+2là D = ℝ.
Khi đó, 1x2−x+1≤12x2+x+2
⇔ 2x2 + x + 2 ≤ x2 – x + 1
⇔ x2 + 2x + 1 ≤ 0
⇔ (x + 1)2 ≤ 0
Do (x + 1)2 ≥ 0 với mọi số thực x nên ta có:
(x + 1)2 ≤ 0
⇔ (x + 1)2 = 0
⇔ x + 1 = 0
⇔ x = –1
Vậy tập nghiệm của bất phương trình 1x2−x+1≤12x2+x+2là S = {–1}.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |