Cho tam giác ABC có AB = 2, AC = 3, BAC^=60° . Gọi M là trung điểm của đoạn thẳng BC. Điểm D thỏa mãn AD→=712AC→ .
a) Tính AB→ . AC→ .
b) Biểu diễn AM→, BD→ theo AB→, AC→ .
c) Chứng minh AM ⊥ BD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: AB→ . AC→= AB→. AC→. cosAB→, AC→
=AB . AC . cosBAC^= 2 . 3 . cos60° = 3.
b) + Do M là trung điểm của BC nên với điểm A ta có: AB→+AC→=2AM→
⇒AM→=12AB→+AC→=12AB→+12AC→.
Do đó: AM→=12AB→+12AC→.
+ Ta có: BD→=BA→+AD→=−AB→+AD→
Mà AD→=712AC→
Nên BD→=−AB→+712AC→=−AB→+712AC→.
Vậy BD→=−AB→+712AC→.
c) Ta có: AM→ . BD→=12AB→+12AC→.−AB→+712AC→
=−12AB→2+724AB→.AC→−12AC→.AB→+724AC→2
=−12.AB2+724.AB→.AC→−12AB→.AC→+724.AC2
=−12.22+724.3−12.3+724.32= 0
Suy ra: AM→ . BD→=0 .
Vậy AM ⊥ BD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |