Cho khối lăng trụ tam giác ABC.A'B'C', đáy là tam giác ABC đều cạnh a. Gọi M là trung điểm AC. Biết tam giác A'MB cân tại A' và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Góc giữa A'B với mặt phẳng (ABC) là 30°. Thể tích khối lăng trụ đã cho là:
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi H là trung điểm BM, tam giác A'BM cân tại A' nên A'H ^ BM
Ta có:
\(\left\{ \begin{array}{l}\left( {A'BM} \right) \bot \left( {ABC} \right)\\\left( {A'BM} \right) \cap \left( {ABC} \right) = BM\\A'H \bot BM\end{array} \right. \Rightarrow A'H \bot \left( {ABC} \right)\)
Tam giác ABC đều cạnh a nên ta có:
\(\left\{ \begin{array}{l}BM = \frac{{a\sqrt 3 }}{2} \Rightarrow BH = \frac{{a\sqrt 3 }}{4}\\{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\end{array} \right.\)
A'B có hình chiếu vuông góc trên (ABC) là HB
Góc tạo bởi A'B với mặt phẳng (ABC) là góc A'BH (vì góc A'BH là góc nhọn)
Xét tam giác A'BH vuông tại H, ta có: \(\widehat {A'BH} = 30^\circ \)
\(\tan \widehat {A'BH} = \frac{{A'H}}\)
\( \Rightarrow \tan 30^\circ = \frac{{A'H}}{{\frac{{a\sqrt 3 }}{4}}}\)
\( \Rightarrow A'H = \frac{{a\sqrt 3 }}{4}\,.\,\tan 30^\circ = \frac{a}{4}\)
Vậy \({V_{ABC.A'B'C'}} = A'H\,.\,{S_{\Delta ABC}} = \frac{a}{4}\,.\,\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |