Cho tam giác ABC. Các đường trung tuyến AF, BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của BG và CG.
a) Chứng minh rằng tứ giác DEKI là hình bình hành.
b) Biết AF = 6 cm. Tính độ dài các đoạn thẳng DI và EK.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do DE là đường trung bình của tam giác ABC nên DE // BC và \(DE = \frac{2}.\)
Tương tự, IK là đường trung bình của tam giác GBC nên IK // BC và \(IK = \frac{2}.\)
Từ hai kết quả trên, suy ra DE // IK và DE = IK. Tứ giác DEKI có hai cạnh đối diện song song và bằng nhau nên là hình bình hành.
b) Vì G là trọng tâm của tam giác ABC nên \(AG = \frac{3} = 4\) cm.
Mặt khác EF là đường trung bình của tam giác CAG nên \(EK = \frac{2} = 2\) cm.
Chứng minh tương tự ta cũng có DI là đường trung bình của tam giác BAG.
Từ đó suy ra DI = EK = 2 cm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |