Tìm tập xác định của các hàm số sau:
a) y = cot 3x;
b) \[y = \sqrt {1 - \cos 4x} \];
c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);
d) \(y = \sqrt {\frac} \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Biểu thức cot 3x có nghĩa khi sin 3x ≠ 0 hay \(3x \ne k\pi ,\,k \in \mathbb{Z}\) hay \(x \ne k\frac{\pi }{3},\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {k\frac{\pi }{3}|k \in \mathbb{Z}} \right\}\).
b) Biểu thức \[\sqrt {1 - \cos 4x} \] có nghĩa với mọi x vì cos 4x ≤ 1 với mọi x hay 1 – cos 4x ≥ 0 với mọi x.
Vậy tập xác định của hàm số là ℝ.
c) Biểu thức \(\frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}} = \frac{{\cos 2x}}{{ - \left( {{{\cos }^2}x - {{\sin }^2}x} \right)}} = \frac{{\cos 2x}}{{ - \cos 2x}}\) có nghĩa khi
cos 2x ≠ 0 hay \(2x \ne \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\), tức là \(x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|\,k \in \mathbb{Z}} \right\}\).
d) Ta có cos 2x ≥ – 1 nên 1 + cos 2x ≥ 0 với mọi x.
sin 2x ≤ 1 nên 1 – sin 2x ≥ 0 với mọi x.
Do đó, biểu thức \(\sqrt {\frac} \)có nghĩa khi sin 2x ≠ 1 hay \(2x \ne \frac{\pi }{2} + k2\pi ,\,k \in \mathbb{Z}\), tức là \(x \ne \frac{\pi }{4} + k\pi ,\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi |\,k \in \mathbb{Z}} \right\}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |