Cho hình bình hành ABCD có AD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng:
a) Tứ giác MDCN là hình thoi;
b) Tam giác EMC là tam giác cân;
c) BAD^=2AEM^.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: MF ⊥ CE, AB ⊥ CE, suy ra MN // AB // CD.
Xét tứ giác MDCN ta có: MD // CN (do AD // BC; M ∈ AD, N ∈ BC) và MN // CD (chứng minh trên).
Do đó tứ giác MDCN là hình bình hành.
Mặt khác M là trung điểm của AD nên MD=12AD
Lại có AD = 2AB mà AB = CD (do ABCD là hình bình hành) nên CD=AB=12AD
Do đó MD = CD.
Suy ra hình bình hành MDCN là hình thoi.
b) Xét tứ giác ADCE ta có AE // CD (theo câu a).
Do đó, tứ giác ADCE là hình thang với hai đáy AE và CD.
Xét hình thang ADCE có:
M là trung điểm AD (giả thiết);
AE // MF // CD (theo câu a).
Theo chứng minh ở Bài 5, trang 63, SBT Toán 8 Tập Một, ta có: F là trung điểm của CE.
Xét ∆EMC có MF là đường trung tuyến ứng với cạnh CE và MF ⊥ CE (giả thiết).
Do đó ∆EMC cân tại M.
c) Tứ giác MDCN là hình thoi nên NMD^=2NMC^ (tính chất đường chéo của hình thoi).
Mà ∆EMC cân tại M nên EMF^=CMF^
Ta có BAD^=NMD^=2NMC^=2EMF^. (1)
Lại có AEM^=EMF^ (hai góc so le trong). (2)
Từ (1) và (2) suy ra BAD^=2AEM^.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |