Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A, AB = 4 cm, AC = 8 cm. Gọi E là trung điểm của AC, M là trung điểm của BC. a) Tính EM. b) Vẽ tia Bx song song với AC sao cho Bx cắt EM tại D. Chứng minh tứ giác ABDE là hình vuông. c) Gọi I là giao điểm của BE và AD, K là giao điểm của BE và AM. Chứng minh tứ giác BDCE là hình bình hành và DC= 6KI.

Cho tam giác ABC vuông tại A, AB = 4 cm, AC = 8 cm. Gọi E là trung điểm của AC, M là trung điểm của BC.

a) Tính EM.

b) Vẽ tia Bx song song với AC sao cho Bx cắt EM tại D. Chứng minh tứ giác ABDE là hình vuông.

c) Gọi I là giao điểm của BE và AD, K là giao điểm của BE và AM. Chứng minh tứ giác BDCE là hình bình hành và DC= 6KI.

1 Xem trả lời
Hỏi chi tiết
12
0
0
Trần Đan Phương
11/09/2024 15:43:54

a) ∆ABC có E là trung điểm của AB, M là trung điểm của BC (giả thiết).

Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có ME=12AB và ME // AB

Do đó ME=12AB=12⋅4=2(cm).

b) Tứ giác ABDE có: AB // DE (do AB // ME) và BD // AE (do Bx // AC ).

Suy ra ABDE là hình bình hành.

Hình bình hành ABDE có BAE^=90° (do ∆ABC vuông tại A) nên ABDE là hình chữ nhật.

Ta lại có AE=12AC (do E là trung điểm của AC), suy ra AE=12⋅8=4(cm).

Khi đó AB = AE = 4 (cm).

Hình chữ nhật ABDE có AB = AE nên ABDE là hình vuông.

c) Hình vuông ABDE có AD cắt BE tại I, suy ra I là trung điểm của AD và BE.

Xét ∆ADC có I là trung điểm AD, E là trung điểm AC

Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có: IE // CD và IE=12CD.

Tứ giác BDCE có: BE // CD (vì IE // CD); BD // EC (vì Bx // AC).

Suy ra BDCE là hình bình hành.

Do đó, hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm của BC, suy ra M cũng là trung điểm của DE.

∆ADE có đường trung tuyến AM và EI cắt nhau tại K nên K là trọng tâm của ∆ADE.

Suy ra KI=13EI=13⋅12 EB=16 EB=16DC.

Vậy DC = 6KI.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×