Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Lấy các điểm M, N, P, Q lần lượt là trung điểm của AO, BO, CO, DO.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Chứng minh tứ giác ANCQ là hình bình hành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ∆AOB có M, N lần lượt là trung điểm của AO, BO.
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có: MN // AB; MN=12AB. (1)
Tương tự, xét ∆OCD ta cũng có PQ // CD;QP=12DC. (2)
Mà AB // CD; AB = CD (do ABCD là hình bình hành). (3)
Từ (1), (2) và (3) suy ra MN // PQ, MN = PQ.
Vậy tứ giác MNPQ là hình bình hành.
b) Xét ∆ANB và ∆CQD có:
AB = CD (ABCD là hình bình hành);
ABN^=CDQ^ (hai góc so le trong do AB // CD);
BN=DQ=14BD (vì OB = OD, NO = NB, QO = QD)
Do đó ∆ANB = ∆CQD (c.g.c). Suy ra AN = CQ. (4)
Xét ∆AQD và ∆CNB có:
AD = BC (do ABCD là hình bình hành);
ADQ^=CBN^ (hai góc so le trong do AD // BC);
DQ=BN=14BD.
Do đó ∆AQD = ∆CNB (c.g.c). Suy ra AQ = CN. (5)
Từ (4) và (5) suy ra ANCQ là hình bình hành.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |