Chứng minh định lí: “Nếu một tứ giác \[ABCD\] có tổng các cạnh đối bằng nhau \[AB + CD = BC + AD\] thì tứ giác đó ngoại tiếp được một đường tròn” bằng cách chứng minh các tia phân giác của bốn góc \[A,B,C,D\] cùng gặp nhau tại một điểm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta chỉ cần chứng minh các tia phân giác của ba góc \[A,B,D\] gặp nhau tại một điểm. Xét hai trường hợp:
Trường hợp 1: Nếu \[AB = BC\] thì từ giả thiết suy ra \[CD = AD\].
Xét \[\Delta ABD\] và \[\Delta CBD\] có \[AB = BC\], \[AD = DC\] và \[BD\] chung nên \[\Delta ABD = \Delta CBD\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].
Do đó \[BD\] là đường phân giác của các góc \[B\] và \[D\].
Gọi \[O\] là giao điểm của tia phân giác góc \[A\] với \[BD\]. Suy ra \[BO,DO\] là các tia phân giác của các góc \[B\] và \[D\].
Trường hợp 2: Nếu \[AB \ne BC\], giả sử \[AB > BC\], suy ra \[DA > DC\].
Lấy điểm \[M\] trên \[AB\], điểm \[N\] trên \[AD\] sao cho \[BM = BC,DN = DC\].
Từ giả thiết suy ra \[AM = AN\]. Các đường phân giác của các góc \[A,B,D\] chính là các đường trung trực của tam giác \[CMN\] nên chúng gặp nhau tại một điểm \[O\].
Vậy điểm \[O\] là tâm của đường tròn nội tiếp tứ giác \[ABCD\].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |