LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\]. \[D,E,F\] lần lượt là các tiếp điểm \[AB,BC,CA\] với \[\left( O \right)\]. Tìm các hệ thức tương tự hệ thức ở bài trước.

Cho đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\]. \[D,E,F\] lần lượt là các tiếp điểm \[AB,BC,CA\] với \[\left( O \right)\].

Tìm các hệ thức tương tự hệ thức ở bài trước.

1 trả lời
Hỏi chi tiết
11
0
0
Phạm Minh Trí
11/09 15:50:03

Chứng minh tương tự câu a) ta cũng có các hệ thức sau:

            \[2BD = 2BE = AB + BC - AC;{\rm{ }}2CE = 2CF = BC + AC - AB\]

Ví dụ 3: Cho hình thang \[ABCD\] vuông tại hai đỉnh \[A\] và \[D\], ngoại tiếp đường tròn \[\left( O \right)\].

Tìm độ dài các cạnh \[AB\] và \[CD\], biết rằng \[OB = 6{\rm{ cm}}\] và \[OC = 8{\rm{ cm}}\].

Giải chi tiết

Do \[ABCD\] ngoại tiếp đường tròn \[\left( O \right)\] nên các cạnh của hình thang \[ABCD\] là tiếp tuyến của \[\left( O \right)\].

Theo tính chất của hai tiếp tuyến cắt nhau suy ra \[BO\] và \[CO\] lần lượt là tia phân giác của góc \[\widehat {ABC},{\rm{ }}\widehat {BCD}\].

Xét \[\Delta BOC\] có: \[\widehat {OBC} + \widehat {OCB} = \frac{{\widehat {ABC} + \widehat {BCD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

Suy ra \[\Delta BOC\] vuông \[O\]. Áp dụng định lí Pitago trong tam giác vuông này ta có:

            \[B{C^2} = O{B^2} + O{C^2} = {6^2} + {8^2} = 100 \Rightarrow BC = 10{\rm{ cm}}\].

Giả sử đường tròn \[\left( O \right)\] tiếp xúc với \[BC\] tại \[K\], suy ra \[OK \bot BC\].

Áp dụng hệ thức lượng trong tam giác vuông \[OBC\], với \[OK\] là đường cao, ta có:

            \[\frac{1}{{O{K^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{6^2}}} + \frac{1}{{{8^2}}} = \frac \Rightarrow OK = \frac{5}{\rm{ cm}}\].

Gọi \[E,F\] lần lượt là tiếp điểm của \[AB\] và \[CD\] với đường tròn \[\left( O \right)\].

Suy ra \[OE = OK = \frac{5}\] (bán kính đường tròn \[\left( O \right)\]).

Kẻ \[BH \bot CD\left( {H \in CD} \right)\]. Ta thấy: \[BH = EF = 2OK = \frac{5}{\rm{ cm}}\].

Tương tự, áp dụng định lí Pitago trong tam giác vuông \[HBC\] ta được \[HC = \frac{5}{\rm{ cm}}\].

Ta có \[OE \bot AB\] (do \[AB\] là tiếp tuyến của \[\left( O \right)\]). Mặt khác \[AO\] là tia phân giác của góc \[\widehat {DAB}\]

\[ \Rightarrow \widehat {OAE} = 45^\circ \].

Suy ra tam giác \[AOE\] vuông cân \[ \Rightarrow AE = OE = \frac{5}{\rm{ cm}}\].

Áp dụng định lí Pitago trong tam giác vuông \[OEB\] ta được \[BE = \frac{5}{\rm{ cm}}\].

Vậy \[AB = AE + EB = \frac{5} + \frac{5} = \frac{5}{\rm{ cm}}\].

        \[CD = DH + HC = AB + HC = \frac{5} + \frac{5} = \frac{5}{\rm{cm}}\].

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư