Trong không gian \({\rm{Oxyz}}\), cho đường thẳng \({\rm{d}}:\frac{{{\rm{x}} + 1}}{1} = \frac{{{\rm{y}} + 3}}{2} = \frac{{{\rm{z}} + 2}}{2}\) và điểm \({\rm{A}}\left( {3\,;\,\,2\,;\,\,0} \right).\) Gọi \({\rm{A'}}\) là điểm đối xứng của điểm \({\rm{A}}\) qua đường thẳng \({\rm{d}}\). Khoảng cách từ điểm \({\rm{A'}}\) đến mặt phẳng \(\left( {{\rm{Oxy}}} \right)\) bằng
Đáp án: ……….
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \(\left( {\rm{P}} \right)\) là mặt phẳng đi qua \({\rm{A}}\) và vuông góc với đường thẳng \({\rm{d}}\).
Phương trình của mặt phẳng \(\left( {\rm{P}} \right)\) là: \(1\left( {{\rm{x}} - 3} \right) + 2\left( {{\rm{y}} - 2} \right) + 2\left( {{\rm{z}} - 0} \right) = 0 \Leftrightarrow x + 2y + 2{\rm{z}} - 7 = 0\).
Gọi H là hình chiếu của \(A\) lên đường thẳng \(d\), khi đó \({\rm{H}} = {\rm{d}} \cap \left( {\rm{P}} \right)\)
Suy ra \[{\rm{H}} \in {\rm{d}} \Rightarrow {\rm{H}}\left( { - 1 + {\rm{t}}\,;\,\, - 3 + 2{\rm{t}}\,;\,\, - 2 + 2{\rm{t}}} \right)\].
Mặt khác \({\rm{H}} \in \left( {\rm{P}} \right) \Rightarrow - 1 + {\rm{t}} - 6 + 4{\rm{t}} - 4 + 4{\rm{t}} - 7 = 0\) \( \Rightarrow t = 2\). Vậy \({\rm{H}}\left( {1\,;\,\,1\,;\,\,2} \right)\).
Gọi \(A'\) là điểm đối xứng với \({\rm{A}}\) qua đường thẳng \({\rm{d}}\), khi đó \({\rm{H}}\) là trung điểm của \({\rm{A}}A'\) suy ra \[A'\left( { - 1\,;\,\,0\,;\,\,4} \right).\]
Khoảng cách từ điểm \(A'\) đến mặt phẳng \({\rm{Oxy}}\) là: \({\rm{d}}\left( {A',\,\,\left( {{\rm{Oxy}}} \right)} \right) = 4\). Đáp án: 4.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |