Xét biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền tam giác OAB ở HĐ2. Tọa độ ba đỉnh là O(0;0), A(150; 0) và B(0; 150) (H.2.5).
a) Tính giá trị của biểu thức F(x; y) tại mỗi đỉnh O, A và B.
b) Nêu nhận xét về dấu của hoành độ x và tung độ y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB.
c) Nêu nhận xét về tổng x + y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị lớn nhất của F(x; y) trên miền tam giác OAB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) O(0; 0); B(0; 150); A(150; 0).
Ta có: F(x; y) = 2x + 3y.
Khi đó ta tính được:
F(0; 0) = 2.0 + 3.0 = 0.
F(150; 0) = 2.150 + 3.0 = 300
F(0; 150) = 2.0 + 3.150 = 150
b) Trong miền tam giác OAB, lấy một điểm M(x; y) bất kì thì ta luôn có x 0; y0 nên F(x; y) nhỏ nhất khi x = 0 và y = 0.
F(x; y) min = 2.0 + 3.0 = 0.
Vậy giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB là 0.
c) Vì điểm M(x; y) nằm trong miền tam giác OAB, nên tọa độ điểm M là nghiệm của bất phương trình x + y ≤ 150.
Hơn nữa, x ≥ 0, y ≥ 0 nên x + y ≥ 0.
Do đó ta có, 0 ≤ x + y ≤ 150 ⇔ 0 ≤ 2x + 2y ≤ 300
⇔ 0 + y ≤ 2x + 2y + y ≤ 300 + y
⇔ y ≤ 2x + 3y ≤ 300 + y (1)
Mà 0 ≤ y ≤ 150 nên 300 + y ≤ 300 + 150 = 450.
Từ (1) suy ra: 0 ≤ 2x + 3y ≤ 450 hay F(x; y) ≤ 450.
Dấu “=” xảy ra khi x + y = 150 và y = 150 hay x = 0 và y = 150.
Vậy F(x; y) đạt giá trị lớn nhất là 450 tại điểm B(0; 150).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |