Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nội tiếp trong đường tròn (O). Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác tại D. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh DB=DC=DI.

Cho tam giác ABC nội tiếp trong đường tròn (O). Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác tại D. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh DB=DC=DI.

1 Xem trả lời
Hỏi chi tiết
100
0
0
Nguyễn Thị Nhài
11/09/2024 16:01:58

DB=DC=DI

<=> DB=DI <=>    ΔDBI cân tại D <=>  IBD^=BID^

Giải chi tiết

Ta luôn có DB=DC do AD là tia phân giác trong góc A. Ta sẽ chứng minh tam giác DIB cân tại D.

Thật vậy ta có:  IBD^=IBC^+CBD^.

Mặt khác  CBD^=CAD^ (góc nội tiếp chắn cung  CD).

Mà  BAD^=CAD^, IBC^=IBA^ (tính chất phân giác) suy ra  IBD^=ABI^+BAI^.

Nhưng  BID^=ABI^+BAI^ (tính chất góc ngoài của  ΔABI). Suy ra  IBD^=BID^.

Vậy tam giác BID cân tại D, suy ra  DB=DI=DC.

Nhận xét

Thông qua bài toán này ta có thêm tính chất: Tâm đường tròn ngoại tiếp tam giác IBC là giao điểm của phân giác trong góc A với (O).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×