Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh\(y = {x^2} - 2x + 5\)\(2a\), tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng \(\varphi \) và \(\sin \varphi = \frac{{\sqrt 5 }}{5}\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SCD} \right)\) bằng
Đáp án: ……….
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \(H\) là trung điểm của \(AB\). Vì tam giác \(SAB\) cân tại \(S\) nên \(SH \bot AB\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \bot \left( {ABCD} \right) = AB}\\{SH \subset \left( {SAB} \right),{\mkern 1mu} {\mkern 1mu} SH \bot AB}\end{array}} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)
Gọi \(K\) là trung điểm của \(CD\) ta có
\(\left\{ {\begin{array}{*{20}{l}}{CD \bot HK}\\{CD \bot SH}\end{array}} \right. \Rightarrow CD \bot \left( {SHK} \right) \Rightarrow CD \bot SK\)
\(\left\{ {\begin{array}{*{20}{l}}{\left( {SCD} \right) \cap \left( {ABCD} \right) = CD}\\{SK \subset \left( {SCD} \right),{\mkern 1mu} {\mkern 1mu} \,SK \bot CD}\\{HK \subset \left( {ABCD} \right),{\mkern 1mu} {\mkern 1mu} \,HK \bot CD}\end{array}} \right.\)\( \Rightarrow \widehat {\left( {\left( {SCD} \right),\left( {ABCD} \right)} \right)} = \widehat {\left( {SK,HK} \right)} = \widehat {SKH} = \varphi \)
Vì \(AH\,{\rm{//}}\,CD \Rightarrow AH\,{\rm{//}}\,\left( {SCD} \right) \Rightarrow d\left( {A,\left( {SCD} \right)} \right) = d\left( {H,\left( {SCD} \right)} \right)\)
Trong \(\left( {SHK} \right)\) kẻ \(HI \bot SK{\mkern 1mu} {\mkern 1mu} \left( {I \in SK} \right)\) ta có: \(\left\{ {\begin{array}{*{20}{l}}{HI \bot SK}\\{HI \bot CD{\mkern 1mu} {\mkern 1mu} \left( {CD \bot \left( {SHK} \right)} \right)}\end{array}} \right. \Rightarrow HI \bot \left( {SCD} \right)\)
\( \Rightarrow d\left( {H,\left( {SCD} \right)} \right) = HI\).
Xét tam giác vuông \(HIK\) ta có \(\sin \varphi = \sin \widehat {SKH} = \frac\) \( \Rightarrow HI = HK.\sin \varphi = 2a.\frac{{\sqrt 5 }}{5} = \frac{{2a\sqrt 5 }}{5}\)
Vậy \(d\left( {A,\left( {SCD} \right)} \right) = \frac{{2a\sqrt 5 }}{5}\). Đáp án: \(\frac{{2\sqrt 5 a}}{5}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |