Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án: m∈R\{5}
Phương pháp giải: Hàm đa thức bậc ba\(y = f(x)\)có hai điểm cực trị khi và chỉ khi phương trình \(f'(x) = 0\)có hai nghiệm phân biệt
Giải chi tiết:
TXĐ: \(D = \mathbb{R}\)
Ta có: \(f'(x) = {x^2} - 2mx + 10m - 25\)
Xét phương trình \(f'(x) = 0\)\( \Leftrightarrow {x^2} - 2mx + 10m - 25 = 0\)
Để hàm số ban đầu có 2 điểm cực trị thì phương trình \(f'(x) = 0\)có hai nghiệm phân biệt:
\(\begin{array}{l}\Delta ' = {m^2} - 10m + 25 > 0\\ \Leftrightarrow {(m - 5)^2} > 0\\ \Leftrightarrow m \ne 5\end{array}\)
Vậy m∈R\{5}
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |