Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
\({S_{ABC{\rm{D}}}} = 2{S_{ABD}} = AB.AD.\sin \widehat {BAD} = a.a.\sin 60^\circ = \frac{{{a^2}\sqrt 3 }}{2}\)
Trong (ABCD), dựng OI ⊥ CD
Ta có \(\left. {\begin{array}{*{20}{c}}{CD \bot OI}\\{CD \bot SO}\end{array}} \right\} \Rightarrow CD \bot \left( {SOI} \right) \Rightarrow CD \bot SI\)
Do đó, ((SCD); (ABCD)) = (SI; OI) = \(\widehat {SIO} = 60^\circ \)
∆OCI vuông tại I nên
\(\sin \widehat {OCI} = \frac \Leftrightarrow OI = OC.\sin \widehat {OCI} = \frac{{a\sqrt 3 }}{2}.\sin 30^\circ = \frac{{a\sqrt 3 }}{4}\)
∆SOI vuông tại O nên
\(\tan \widehat {SIO} = \frac \Rightarrow SO = OI.\tan \widehat {SIO} = \frac{{a\sqrt 3 }}{4}.\tan 60^\circ = \frac{4}\)
Vậy \({V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{2}.\frac{4} = \frac{{{a^3}\sqrt 3 }}{8}\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |