Bài tập  /  Bài đang cần trả lời

Cho hình vuông ABCD, gọi O là tâm của hình vuông. Một đường thẳng qua O cắt AD tại P, cắt BC tại Q. a) Chứng minh AP = CQ b) Kẻ Px vuông góc AC tại E (E thuộc AC). Kẻ Qy vuông góc BD tại F (F thuộc BD), Px và Qy cắt nhau tại M. Chứng minh OEMF là hình chữ nhật. c) Chứng minh M thuộc cạnh AB d) Lấy K thuộc BC sao cho CK = DP. Chứng minh \(\widehat {MOK} = 90^\circ \).

Cho hình vuông ABCD, gọi O là tâm của hình vuông. Một đường thẳng qua O cắt AD tại P, cắt BC tại Q.

a) Chứng minh AP = CQ

b) Kẻ Px vuông góc AC tại E (E thuộc AC). Kẻ Qy vuông góc BD tại F (F thuộc BD), Px và Qy cắt nhau tại M. Chứng minh OEMF là hình chữ nhật.

c) Chứng minh M thuộc cạnh AB

d) Lấy K thuộc BC sao cho CK = DP. Chứng minh \(\widehat {MOK} = 90^\circ \).

1 Xem trả lời
Hỏi chi tiết
32
0
0
Tô Hương Liên
11/09/2024 20:17:05

a) Vì ABCD là hình vuông tâm O

Nên OA = OB = OC = OD, AB = BC = CD = DA, AD // BC

Suy ra \(\widehat {DAC} = \widehat {ACB}\) (hai góc so le trong)

Xét tam giác AOP và tam gíc COQ có

\(\widehat {DAC} = \widehat {ACB}\) (chứng minh trên)

OA = OC (chứng minh trên)

\(\widehat {AOP} = \widehat {COQ}\) (hai góc đối đỉnh)

Do đó ΔAOP = ΔCOQ (g.c.g)

Suy ra AP = CQ (hai cạnh tương ứng)

b) Vì AB = AD nên tam giác ABD cân tại A

Mà AO là đường trung tuyến

Suy ra AO là đường cao

Hay AO ⊥ BD

Xét tứ giác OEMF có

\(\widehat {OEM} = \widehat {EOF} = \widehat {OFM} = 90^\circ \)

Suy ra OEMF là hình chữ nhật

c) Vì OEMF là hình chữ nhật

Nên \[\widehat {FME} = 90^\circ \]

Hay tam giác PMQ vuông tại M

Mà MO là trung tuyến

Suy ra OM = OP = OQ

Do đó tam giác POM cân tại O

Lại có OE là đường cao nên OE là phân giác của \(\widehat {POM}\)

Suy ra \(\widehat {POE} = \widehat {EOM}\)

Xét tam giác AOP và tam giác AOM có

AO là cạnh chung

\(\widehat {POE} = \widehat {EOM}\) (chứng minh trên)

OM = OP (chứng minh trên)

Suy ra △AOP = △AOM (c.g.c)

Do đó \(\widehat {AP{\rm{O}}} = \widehat {AM{\rm{O}}}\) (hai góc tương ứng)

Ta có OM = OQ

Do đó tam giác QOM cân tại O

Lại có OF là đường cao nên OF là phân giác của \(\widehat {QOM}\)

Suy ra \(\widehat {QOF} = \widehat {FOM}\)

Xét tam giác BOQ và tam giác BOM có

BO là cạnh chung

\(\widehat {QOF} = \widehat {FOM}\) (chứng minh trên)

OM = OQ (chứng minh trên)

Suy ra △ BOQ = △BOM (c.g.c)

Do đó \(\widehat {{\rm{BQO}}} = \widehat {BM{\rm{O}}}\) (hai góc tương ứng)

Vì AD // BC nên \(\widehat {AP{\rm{O}}} + \widehat {BQO} = 180^\circ \)

Mà \(\widehat {{\rm{BQO}}} = \widehat {BM{\rm{O}}}\), \(\widehat {AP{\rm{O}}} = \widehat {AM{\rm{O}}}\)

Suy ra \(\widehat {AM{\rm{O}}} + \widehat {BMO} = 180^\circ \)

Hay \(\widehat {AMB} = 180^\circ \)

Do đó A, M, B thẳng hàng

Vậy M thuộc cạnh AB

d) Ta có: AP = AD – DP, BK = BC – CK

Mà AD = BC, PD = CK

Suy ra AP = BK

Vì ABCD là hình vuông tâm O

Nên \(\widehat {DAO} = \widehat {OBC} = 45^\circ \)

Xét tam giác POA và tam giác KOB có

OA = OB

\(\widehat {DAO} = \widehat {OBC}\) (chứng minh trên)

PA = BK (chứng minh trên)

Suy ra △POA = △KOB (c.g.c)

Do đó \(\widehat {POA} = \widehat {K{\rm{OB}}}\) (hai góc tương ứng)

Mà \(\widehat {POA} = \widehat {{\rm{AOM}}}\)

Nên \(\widehat {KOB} = \widehat {{\rm{AOM}}}\)

Mặt khác \(\widehat {AOM} + \widehat {{\rm{MOB}}} = \widehat {AOB} = 90^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BOK} + \widehat {{\rm{MOB}}} = 90^\circ \)

Hay \(\widehat {MOK} = 90^\circ \)

Vậy \(\widehat {MOK} = 90^\circ \).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×