Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.

Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.

1 Xem trả lời
Hỏi chi tiết
20
0
0
Nguyễn Thị Sen
11/09/2024 20:09:58

Từ O kẻ OH vuông góc với CD. Nối O với B, OB cắt AC tại K

Suy ra OB ⊥ AC

Vì tam giác ACD nội tiếp (O) đường kính AD

Nên \(\widehat {ACD} = 90^\circ \)

Xét tứ giác OHCK có \(\widehat {OKC} = \widehat {KCH} = \widehat {OHC} = 90^\circ \)

Suy ra OHCK là hình chữ nhật

Do đó OK = CH = \(\frac{1}{2}\)CD = 3, OH = CK = \(\sqrt {O{C^2} - O{K^2}} = \sqrt {{R^2} - 9} \)        (1)

Xét tam giác BCK vuông ở K có

CK = \(\sqrt {B{C^2} - B{K^2}} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \)                                             (2)

Từ (1) và (2) ta có

\(\sqrt {{R^2} - 9} = \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - {{\left( {R - 3} \right)}^2}} \)

\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {20 - {R^2} + 6{\rm{R}} - 9} \)

\( \Leftrightarrow \sqrt {{R^2} - 9} = \sqrt {11 - {R^2} + 6{\rm{R}}} \)

⟺ \({R^2} - 9 = 11 - {R^2} + 6{\rm{R}}\)

⟺ 2R2 – 6R – 20 = 0

⟺ \(\left[ \begin{array}{l}R = 5\\R = - 2\end{array} \right.\)

Vậy bán kính đường tròn là 5 cm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×