Cho tam giác ABC. Dựng phía ngoài tam giác các tam giác đều ABC', BCA', CAB'. Gọi M, N, P lần lượt là trung điểm của CA’, AB’, AC’. Chứng minh rằng:
a) MN = PC.
b) Gọi O là giao điểm của MN và PC. Chứng minh \(\widehat {MOC} = 60^\circ \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi R là trung điểm của BC, Q là trung điểm của AC,
Xét tam giác ABC có R là trung điểm của BC, Q là trung điểm của AC,
Suy ra QR là đường trung bình của tam giác
Do đó QR // AB, \[QR = \frac{1}{2}AB\]
Suy ra \(\widehat {BAC} = \widehat {RQC}\) (hai góc đồng vị)
Vì tam giác ABC’ đều có P là trung điểm của AC’
Nên \(\widehat {ABC'} = \widehat {AC'B} = \widehat {BAC'} = 60^\circ \),
Mà \[QR = \frac{1}{2}AB\]
Suy ra AP = QR
Xét tam giác AB’C có N là trung điểm của B’A, Q là trung điểm của AC
Suy ra QN là đường trung bình
Do đó QN // CB’,
Suy ra \(\widehat {NQC} + \widehat {QCB'} = 180^\circ \)
Hay \(\widehat {NQC} = 180^\circ - \widehat {QCB'} = 180 - 60^\circ = 120^\circ \)
Vì tam giác AB’C đều có N là trung điểm của AB’
Nên \(\widehat {AB'C} = \widehat {ACB'} = \widehat {B'AC} = 60^\circ \),
Mà
Suy ra QN = AN
Ta có \(\widehat {NAP} = \widehat {NAC} + \widehat {CAB} + \widehat {BAP} = 60^\circ + \widehat {CAB} + 60^\circ = \widehat {CAB} + 120^\circ \)
\(\widehat {NQ{\rm{R}}} = \widehat {CQ{\rm{R}}} + \widehat {NQC} = \widehat {CQ{\rm{R}}} + 120^\circ \)
Lại có \(\widehat {BAC} = \widehat {RQC}\) (chứng minh trên)
Suy ra \(\widehat {NAP} = \widehat {NQR}\)
Xét tam giác ANP và tam giác QNR có
QN = AN (chứng minh trên)
\(\widehat {NAP} = \widehat {NQR}\) (chứng minh trên)
AP = QR (chứng minh trên)
Do đó DANP = DQNR (c.g.c)
Suy ra PN = NR, \(\widehat {ANP} = \widehat {QNR}\)
Xét tam giác ANQ có
Suy ra tam giác ANQ đều
Do đó \(\widehat {ANQ} = 60^\circ \)
Hay \(\widehat {ANP} + \widehat {PNQ} = 60^\circ \)
Mà \(\widehat {ANP} = \widehat {QNR}\)
Suy ra \(\widehat {QN{\rm{R}}} + \widehat {PNQ} = 60^\circ \)
Hay \(\widehat {PNR} = 60^\circ \)
Mặt khác NP = NR (chứng minh trên)
Suy ra tam giác PNR đều
Do đó RN = RP
Xét tam giác A’BC có R là trung điểm của BC, M là trung điểm của A’C
Suy ra RM là đường trung bình
Do đó RM // BA’,
Vì tam giác A’BC đều có R là trung điểm của BC
Nên \(\widehat {A'BC} = \widehat {A'CB} = \widehat {BA'C} = 60^\circ \),
Mà
Suy ra RC = RM
Ta có \(\widehat {P{\rm{R}}C} = \widehat {PRN} + \widehat {RNC} = 60^\circ + \widehat {RNC}\)
\(\widehat {N{\rm{RM}}} = \widehat {CRM} + \widehat {NRC} = 60^\circ + \widehat {NRC}\)
Suy ra \(\widehat {PRC} = \widehat {NRM}\)
Xét tam giác PRC và tam giác NRM có
PR = RN (chứng minh trên)
\(\widehat {PRC} = \widehat {NRM}\) (chứng minh trên)
RC = RM (chứng minh trên)
Do đó DPRC = DNRM (c.g.c)
Suy ra PC = NM (hai cạnh tương ứng)
b) Vì △PRC = △NRM (chứng minh câu a)
Nên \(\widehat {RPC} = \widehat {RNM}\) (hai góc tương ứng)
Xét tam giác PNO có \(\widehat {PNO} + \widehat {PON} + \widehat {OPN} = 180^\circ \) (tổng ba góc trong một tam giác)
Hay \(\widehat {PNR} + \widehat {RNM} + \widehat {PON} + \widehat {OPN} = 180^\circ \)
Mà \(\widehat {RPC} = \widehat {RNM}\)
Suy ra \(\widehat {PON} = 180^\circ - \widehat {NP{\rm{R}}} - \widehat {PN{\rm{R}}} = 180^\circ - 60^\circ - 60^\circ = 60^\circ \)
Lại có \(\widehat {PON} = \widehat {MOC}\) (hai góc đối đỉnh)
Suy ra \(\widehat {MOC} = 60^\circ \)
Vậy \(\widehat {MOC} = 60^\circ \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |