Cho tam giác ABC không vuông, với trực tâm H, nội tiếp đường tròn (O). Kẻ đường kính AA' của đường tròn (O).
Gọi M là trung điểm cạnh BC. Tìm mối quan hệ về phương, hướng và độ dài của hai vectơ \(\overrightarrow {AH} \) và \(\overrightarrow {OM} .\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Ta có: O và M lần lượt là trung điểm của AA' và BC
Nên OM là đường trung bình của tam giác AA'H
Do đó AH = 2OM và OM // AH (tính chất đường trung bình)
Vậy, hai vectơ \(\overrightarrow {OM} \) và \(\overrightarrow {AH} \) có:
+ Cùng phương
+ Cùng hướng
+ \(\left| {\overrightarrow {AH} } \right| = 2\left| {\overrightarrow {OM} } \right|\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |