Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.
Chứng minh rằng O là trung điểm MN.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Vì
ABCD là hình bình hành tâm O
Nên O là trung điểm của AC và BD và \(\widehat {ADO} = \widehat {CBO}\)
Xét ∆ODN và ∆OBM có:
OD = OB (do O là trung điểm của BD),
\(\widehat {DON} = \widehat {BOM}\) (hai góc đối đỉnh),
\(\widehat {NDO} = \widehat {MBO}\)(do \(\widehat {ADO} = \widehat {CBO}\))
∆ODN = ∆OBM (g.c.g)
ON = OM (hai cạnh tương ứng)
O là trung điểm của NM.
Vậy O là trung điểm của NM.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |